Research

Publications
Title: Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration
First author: Zhang, Weizhen; Shen, Hong; Zhang, Jia; Yu, Jia; Xie, Ping; Chen, Jun
Journal: CHEMOSPHERE
Years: 2020
Volume / issue: 239 /
DOI: 10.1016/j.chemosphere.2019.124702
Abstract: Restoration of submerged macrophytes is widely applied to counteract eutrophication in shallow lakes. However, proliferation and accumulation of filamentous algae (possessing free-floating and periphytic life forms) hamper growth of submerged macrophytes. Here, we explored factors triggering the excessive proliferation of filamentous algae during lake restoration using field investigations and laboratory experiments. Results showed that, compared with free-floating Oscillatoria sp. (FO), periphytic Oscillatoria sp. (PO) showed faster growth rate, greater photosynthetic capacities and higher phosphorus (P) affinity. Therefore, PO was physiologically competitively superior to FO under low P concentration and improved light conditions. And proliferation of filamentous algae was mainly manifested in periphytic life form. Besides, field results showed that density of filamentous algae in water column might be related to substrate types. Some macrophyte (Cemtophyllum oryzetorum and Potamogeton crispus) might provide proper substrates for proliferation of filamentous algae. Further physiological experiments found that Oscillatoria showed specific eco-physiological responses to different macrophyte species. Hydrilla verticillata and C. oryzetorum promoted growth and photosynthetic activity of Oscillatoria, while Potamogeton malaianus inhibited growth and P uptake of PO. Myriophyllum spicatum exhibited no impact on growth of Oscillatoria. Our results revealed the intrinsic (physiological differences between free-floating and periphytic life forms of filamentous algae) and extrinsic (different macrophytes) factors affect the proliferation of filamentous algae, which are important for guidance on planting of submerged macro-phytes during lake restoration. (C) 2019 Elsevier Ltd. All rights reserved.