Research

Publications
Title: Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery
First author: Li, Jing; Ma, Xufa; Su, Guanyong; Giesy, John P.; Xiao, Yuan; Zhou, Bingsheng; Lacher, Robert J.; Liu, Chunsheng
Journal: ENVIRONMENTAL POLLUTION
Years: 2016
Volume / issue: 218 /
DOI: 10.1016/j.envpol.2016.08.034
Abstract: Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is considered a re-emerging environmental pollutant, and exposure to environmentally relevant concentrations has been shown to cause individual developmental toxicity in zebrafish and the water flea (Daphnia magna). However, multigenerational effects during exposure to TDCIPP and after subsequent recovery were unknown. In the present study, individuals of a model aquatic organism, the ciliated protozoan, T. thermophila were exposed to environmentally-relevant concentrations of TDCIPP (0, 300 or 3000 ng/L) for 60 days (e.g., theoretically 372 generations) followed by a 60-day period of recovery, during which T. thermophila were not exposed to TDCIPP. During exposure and after exposure, effects at the molecular, histological, individual and population levels were examined. Multigenerational exposure to 300 or 3000 ng TDCIPP/L for 60 days significantly decreased numbers of individuals, sizes of individuals, expressed as length and width of bodies, number of cilia, and depth and diameter of basal bodies of cilia, and up-regulated expressions of genes related to assembly and maintenance of cilia. Complete or partial recoveries of theoretical sizes of populations as well as sizes of individuals and expressions of genes were observed during the 60-day recovery period. Effects on number of cilia and depth and diameter of basal body of cilia were not reversible and could still be observed long after cease of TDCIPP exposure. Collectedly, and shown for the first time, multigenerational effects to T. thermophila were caused by exposure to environmentally relevant concentrations of TDCIPP. Also, there were multi-generational effects at the population level that were not caused by carry-over exposure to TDCIPP. The permanent alterations and their potential significance are discussed. (C) 2016 Elsevier Ltd. All rights reserved.